HOLIVAR
Holocene Research

Contents

2 Announcements
- Editor's HOLIVAR
- PAGES Session at the Fall AGU 2003
- Inside PAGES
- Tales From the Field: We Need Your Input
- Newsletters: Do You Need a Handcopy?
- New on the Bookshelf
- Marie Curie International Fellowships

31 Workshop Reports
- 2nd HOLIVAR Workshop, Belgium: Climate Modeling
- Holocene Climate Variability
- Environmental Magnetism, India

35 Epilogue
- Holocene Research: Past Present Future

36 Last Page
- Calendar
- A New Paleofire Database

- Climate and Fennoscandian Tree-Rings
- Climate Reconstruction from Peatlands
- Climate Forcing During the Holocene
- Tephra, a Tool for Dating and Correlation
- Simulating the Last Millennium Climate
- Holocene Climate in the Tien Shan Region
- Climate Variations in the Gulf of California
- Climate and the Maya

Annually banded archives: (from left to right): tree rings of Huon pine from Tasmania (Edward Cook); varves from Lake Holmsoe, Germany (Bernd Zolitschka); speleothems from Rana, Norway (U. Kleiven); coral from Papua New Guinea (Sandy Tushingham); ice from GISP2, Greenland (Anthony Gow).
Late Holocene Paleoclimate and Paleogeography in the Tien Shan-Balkhash Region

B. J. Ariskin, R. Sala, S. A. Nigmatova
Laboratory of Geo-Archaeology, Institute of Geology, Academy of Sciences, Almaty, Kazakhstan; isplz@kursat.kz

The Tien Shan-Balkhash region (Semirechie) (Fig. 1) is a rich natural archive of paleoclimatic data but is poorly known. Research in this region, performed during Soviet times and resumed in recent years, shows that changes in atmospheric circulation, paleoclimate, and paleo-geographical conditions, including a chronology of basic events in the arid continental regions of Central Asia, can be successfully reconstructed. Research included multiproxy reconstruction from geological-geomorphological, hydrologica\(\text{\textipa{al}},\) palaeontological (paleobotanical, palinological), pedological (micro-morphological) and archeological studies, as well as independent dating methods (EPR – Electronic Paramagnetic Resonance; \(^{14}C\)).

Quaternary Climatic Events

Data collected during Soviet times concerning the Quaternary period as a whole, are based on qualitative analyses and relative dating, and provide low temporal resolution. The following results have been reported:

- The formation of the high-mountain range of the Tien Shan began during the Pleistocene, 1.6-13 million years BP. The rise of plateaus above 3000 m and the establishment of the first and largest glaciation occurred 1.2-1.1 million yrs BP.
- In the second half of the Pleistocene (0.5 million yrs BP), the increase in mountain height to more than 5000 m blocked the path of the Indian monsoons. This caused a reduction and then total halt of monsoonal influence on West-Central Asia and started the process of aridization that gave the region its modern features.
- With the fading of the monsoonal influence, polar air masses from the Arctic glacial zone (Siberian anticyclone) and eastward branches (along 45°-50° latitude) of the Atlantic anticyclone (Azores High) began to play a major role. In this way, the

Late Holocene Climate and Human Adaptation

Quantitative evaluation and absolute dating of paleoclimatic changes for the late Holocene have only been attempted in the last 5 years in the context of geo-archeological research for project INTAS 97-2220. Temperature and precipitation reconstructions are based on palinological data and transfer functions located in three different zones: The semideserts of Southern Pre-Balkhash, the foothills of the Tien Shan and Jungarian ranges and the high mountains. Sites with average trench depths of 250 cm provided a 3000-3500 year sequence of events. Samples were collected every 7-15 cm to allow 150-year temporal resolution. Dating was based on EPR of carbonates and on correlation with archeological findings from settlements and tombs submitted for \(^{14}C\) analyses.

It has been established that local climatic fluctuations are well correlated in tendency, time and periodicity with global estimates. But relevant regional anomalies, mainly determined by the continental location of the region, are also observed (phase 3), emphasizing the forcing impact of seasonal anomalies. Also, sub-regional differences exist between plains and mountains because of their different exposure to drought and glacial events and the different (sometimes opposite) reaction of their environments to climatic variations.

In Semirechye, climatic forcing on borders of landscape zones in plains, and of vertical belts in mountains is strong enough to influence human use of large areas. In such cases, one can analyze both the correlation between climatic and palinological events, as well as patterns of human land-use and environmental adaptations such as settlement localization, switches between sedentary and nomadic life or between pastoralist and farming activities, or development of irrigation schemes, etc.
Modern climatic conditions in Semirechie including the arid continental plains and humid mountains are moderately hot and dry, with an average continental index of 30. Preliminary reconstruction of paleoclimate and human land-use in plain and mountain zones of Semirechie during the last 3200 years distinguishes 5 main phases, described below (Fig. 2).

Calibration with modern standards suggests that during the whole interval, average temperature range fluctuated between +1°C to -2°C; precipitation between ±20% in plains and ±30% in mountains, and continentality indexes between 27 and 34. The five main phases are as follows:

Late Subboreal: Late-Final Bronze Age (3200-2800 BP)
Plains had arid conditions, slightly warmer and drier than modern; mountains had humid conditions, slightly cooler and wetter than modern. Glaciers on the Northern Tien Shan contracted to less than 2 km in length. Balkhash water level continued to shrink (from 344 m asl at 3800 BP) to less than 342 m asl. From this time on it fluctuated around the 342 m level, due to a complex balancing of synchroneous hydrological changes and the melting of former accumulations of ice. The borders of vegetative cover in all landscape zones and vertical belts remained close to modern. Human communities (Late Bronze culture) practiced pastoralist activities with settled villages in mountain habitats (Assy 2500 m asl, Turghen 2300 m, Tasbas 1800 m, Uj-Jalau 1400) and scattered houses in oases of piedmonts and plains (Tamgaly 800 m).

Early Subatlantic: Early Iron Age (2800-2000 BP)
The average climate was pluvial—cooler and wetter than modern, with larger seasonal amplitudes of temperature and humidity. Both plains and mountains had cold-wet conditions, with some differences in periodicity. In plains the peak of cold and humidity fell around 2400 BP, in the mountains around 2200 BP a difference probably due to prolonged ice accumulation. Glaciers on the Northern Tien Shan grew back to more than 2 km in length. Balkhash water levels reached a minimum of 338 m around 2500 BP and then peaked at a maximum of 343 m in 2200 BP. The borders of vegetal zones in the plains and mountains changed in response to climatic fluctuations. Alpine zones became glacial and were abandoned (at least during the cold season). Semidesert plains were transformed into steppes, consistently increasing the potential areas of human activity and favoring the conversion to nomadic pastoralism with seasonal occupation, new herd composition, horse riding, demographic expansion, and relative decline in stable housing mostly located in the piedmont zone halfway between winter and summer pastures. A major economical and cultural change occurred (Saka and early Wusun cultures).

Short Interval 2000-1800 BP
This period must be noted for its peculiarity. There are ubiquitous signs of increased continentality, with very severe cold-dry winters and cold-wet summers. The phenomenon is most pronounced in plains where exceptionally cold temperatures and seasonal contrasts of precipitation caused a botanical catastrophe and
cryolitic formations. Data suggest the establishment of an exceptional blockage of winter atmospheric circulation in Central Asia for almost two centuries, which must correspond to some climatic events of global dimension. Steppes were reduced and human habits become more sedentary, with primitive agricultural practices in the piedmont fans (Wusun culture).

Middle Subatlantic; Early and Mid Middle Ages (1800-800 BP)

Plains and mountains were characterized by cold-wet conditions until 1000 BP when conditions close to modern were established. Continentality indexes remained high with cold-dry winters. The Northern Tien Shan saw a catastrophic degradation of ice deposits from which they never recovered. Balkhash water levels decreased to a minimum of 339 m around 900 BP. Human geography saw the expansion of agricultural activities together with the spread of irrigation practices, proto-urbanization along river courses and the blossoming of the northern branch of the Silk Road (late Wusun and Turkic periods).

Late Subatlantic; Middle and Late Middle Ages (800-200 BP)

Climate became cooler and wetter than either the former period or the modern climate. Moderate advances of ice occurred. The plains reached a minimum temperature around 550 BP, the mountains around 250 BP. Balkhash water levels continued to rise until a peak of 344 m was reached in 1910 AD. A conversion to pastoralist practices and nomadic habits took place. Most likely this was favored by the reestablishment of climatic conditions similar to those of the Early Iron Period but also by political military events and the crisis in the Silk Road trade (Mongol and early Kazakh periods). After 200 BP, climatic conditions tended progressively towards the warmer and drier conditions of modern times.

References